A Reinforcement Learning Model for Solving the Folding Problem

نویسندگان

  • Gabriela Czibula
  • Istvan-Gergely Czibula
چکیده

In this paper we aim at proposing a reinforcement learning based model for solving combinatorial optimization problems. Combinatorial optimization problems are hard to solve optimally, that is why any attempt to improve their solutions is beneficent. We are particularly focusing on the bidimensional protein folding problem, a well known NP-hard optimizaton problem important within many fields including bioinformatics, biochemistry, molecular biology and medicine. A reinforcement learning model is introduced for solving the problem of predicting the bidimensional structure of proteins in the hydrophobic-polar model. The model proposed in this paper can be easily extended to solve other optimization problems. We also give a mathematical validation of the proposed reinforcement learning based model, indicating this way the potential of our proposal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Software Framework for Solving Combinatorial Optimization Tasks

Due to the major practical importance of combinatorial optimization problems, many approaches for tackling them have been developed. As the problem of intelligent solution generation can be approached with reinforcement learning techniques, we aim at presenting in this paper a programming interface for solving combinatorial optimization problems using reinforcement learning techniques. The adva...

متن کامل

A Distributed Reinforcement Learning Approach for Solving Optimization Problems

Combinatorial optimization is the seeking for one or more optimal solutions in a well defined discrete problem space. The optimization methods are of great importance in practice, particularly in the engineering design process, the scientific experiments and the business decision-making. We are investigating in this paper a distributed reinforcement learning based approach for solving combinato...

متن کامل

Outsourcing or Insourcing of Transportation System Evaluation Using Intelligent Agents Approach

Nowadays, outsourcing is viewed as a trade strategy and organizations tend to adopt new strategies to achieve competitive advantages in the current world of business. focusing on main copmpetencies, and transferring most of activities to outside resources of organization( outsourcing) is one such strategy is. In this paper, we aim to decide on decision maker agent of transportation system, by a...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

An hybrid approach for robots learning folding tasks

We tackle the problem of using cooperative manipulators to perform towel folding tasks. Differently from other recent approaches, our method executes what we call a momentum fold a swinging motion that exploits the dynamics of the manipulated object. We propose a new learning algorithm that combines imitation and reinforcement learning. Human demonstrations are used to reduce the search space o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011